

Technical Data

Cylinders	V12	
Piston displacement	2,193 cu. in. (36 L)	
Compression ratio	8.6:1	
Bore & stroke	5.98" x 6.5" (152 x 165 mm)	
Jacket water system capacity	44 gal. (166 L)	
Lube oil capacity	86 gal. (326 L)	
Fuel Pressure Range	25 - 50 psi (1.72 - 3.45 bar)	
Starting system	150 psi max. air/gas 24V DC electric	
Cooling Water Flow at Jacket Water gpm (I/m) Aux. Water apm (I/m)	1500 rpm 222 (840) 52 (197)	1800 rpm 263 (997) 62 (235)

Dimensions I x w x h inch (mm)

88 (2,235) x 61.97 (1,574) x 73.11 (1,857)

Weights Ib (kg)

11,200 (5,171)

The Waukesha* VGF* series of highspeed engines are built with the durability expected from a medium-speed engine. This series of engines is designed for a wide range of stationary, spark-ignited, gaseous fuel applications and has a high power-to-weight ratio operating up to 1800 RPM. The VGF Series simplifies maintenance procedures. The engine design allows easy access to the oil pump, main bearings and rod bearings—without the need to lower the oil pan. Commonality of parts between VGF models reduces the amount of inventory needed for servicing a fleet. Standard design features, such as independent heads, simplify maintenance work.

Performance Data

ercoo	ler Water Temperature 130°F (54°C)	1800 RPM	1500 RPM
	Power bhp (kWb)	800 (600)	670 (500)
	BSFC (LHV) Btu/bhp-hr (kJ/kWh)	7,389 (10,393)	7,245 (10,244)
	Fuel Consumption Btu/hr x 1000 (kW)	5,911 (1,732)	4,854 (1,423)
ω	NOx g/bhp-hr (mg/Nm³ @ 5% O ₂)	16.00 (5,926)	16.00 (5,926)
sions	$COg/bhp-hr (mg/Nm^3 @ 5% O_2)$	8.00 (2,963)	8.00 (2,963)
ш	NMHC g/bhp-hr (mg/Nm³ @ 5% 0 ₂)	0.25 (93)	0.25 (93)
	THC g/bhp-hr (mg/Nm³ @ 5% O₂)	1.50 (556)	1.50 (556)
	Heat to Jacket Water Btu/hr x 1000 (kW)	1,844 (540)	1,533 (449)
Φ	Heat to Lube Oil Btu/hr x 1000 (kW)	293 (86)	239 (70)
Heat Balance	Heat to Intercooler Btu/hr x 1000 (kW)	123 (36)	84 (25)
	Heat to Radiation Btu/hr x 1000 (kW)	165 (48)	152 (45)
	Total Exhaust Heat Btu/hr x 1000 (kW)	1,564 (458)	1,235 (362)
y st	Induction Air Flow scfm (Nm³/hr)	1,160 (1,783)	953 (1,464)
Exhaust System	Exhaust Flow lb/hr (kg/hr)	5,162 (2,341)	4,240 (1,923)
⊑ X ⟨S	Exhaust Temperature °F (°C)	1,116 (602)	1,068 (576)

All data according to full load and subject to technical development and modification.

Consult your local Waukesha representative for system application assistance. The manufacturer reserves the right to change or modify without notice, the design or equipment specifications as herein set forth without incurring any obligation either with respect to equipment previously sold or in the process of construction except where otherwise specifically guaranteed by the manufacturer.

INNIO* is a leading solutions provider of gas engines, power equipment, a digital platform and related services for power generation and gas compression at or near the point of use. With our Jenbacher* and Waukesha* product brands, INNIO pushes beyond the possible and looks boldly toward tomorrow. Our diverse portfolio of reliable, economical and sustainable industrial gas engines generates 200 kW to 10 MW of power for numerous industries globally. We can provide life cycle support to the more than 48,000 delivered gas engines worldwide. And, backed by our service network in more than 100 countries, INNIO connects with you locally for rapid response to your service needs. Headquartered in Jenbach, Austria, the business also has primary operations in Welland, Ontario, Canada, and Waukesha, Wisconsin, US.

© Copyright 2021 INNIO Waukesha Gas Engines Inc. Information provided is subject to change without notice. All values are design or typical values when measured under laboratory conditions.

